
CSCI 210: Computer Architecture
Lecture 8: Computer Representation of MIPS

Instructions

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

Announcements

• Problem Set 2 due Friday

• Lab 2 available now

CS History: ENIAC

U.S. Army photo of ENIAC

• Electronic Numerical Integrator
And Computer

• First programmable, electronic,
general-purpose computer

• Created by the US Army in 1945

• Designed to compute ballistic
tables during WWII

• Originally didn’t have storage

• Decimal, not binary!

CS History: ENIAC
• Programmers were Kay McNulty, Jean

Bartok, Betty Snyder, Marlyn Meltzer,
Fran Bilas, and Ruth Lichterman.

• Selected from a group of 200 women
employed hand calculating equations
for the army

• Programmed by connecting
components with cables and setting
switches

• Kay McNulty developed the use of
subroutines

• Betty Snyder and Jean Bartok went on
to help develop the first commercial
computers

U.S. Army photo

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such, are indistinguishable

from data

2. Programs are stored in alterable memory (that can be read or written to) just
like data

Stored-program concept

• Programs can be shipped as files of binary
numbers – binary compatibility

• Computers can inherit ready-made software
provided they are compatible with an existing
ISA and OS – leads industry to align around a
small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll data

Source code in C
for Acct prg

Memory

What happens if someone writes new machine code
in the memory where your program is stored,

overwriting your program?

A. The program will crash.

B. The old instructions will run.

C. The new instructions will run.

D. None of the above

Recall: Instruction Set Architecture

• Definition of how to access the hardware from software

• Supported instructions, registers, etc . . .

Key ISA decisions

• operations
▪ how many?

▪ which ones

• operands
▪ how many?

▪ location

▪ types

• instruction format
▪ size

▪ how many formats?

y = x + b

operation

source operands

destination operand

how does the computer know what
0001 0100 1101 1111
means?

add r1, r2, r5

RISC versus CISC (Historically)

• Complex Instruction Set Computing
– Larger instruction set

– More complicated instructions built into hardware

– Variable number of clock cycles per instruction

• Reduced Instruction Set Computing
– Small, highly optimized set of instructions

– Memory accesses are specific instructions

– One instruction per clock cycle (only the very first RISCs!)

A = A*B

RISC (MIPS-esque)

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

Which of these is faster?

RISC

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

RISC vs CISC

RISC

• More work for
compiler/assembly
programmer

• More RAM used to store
instructions

• Less complex hardware

CISC

• Less work for
compiler/assembly
programmer

• Fewer instructions to store

• More complex hardware

So . . . Which System “Won”?

• Most processors are RISC

• BUT the x86 (Intel) is CISC

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear

– Some RISC instruction sets have more instructions than some CISC
sets

The computer figures out what format an
instruction is from

A. Codes embedded in the instruction itself.

B. A special register that is loaded with the instruction.

C. It tries each format and sees which one forms a valid
instruction.

D. None of the above

Instruction Formats
What does each bit

mean?

• Having many different
instruction formats...

– complicates decoding

– uses more instruction
bits (to specify the
format)

x86-64 example

Encoding Instruction

01 d8 add eax, ebx

48 01 d8 add rax, rbx

48 03 03 add rax, qword ptr [rbx]

48 03 04 8b add rax, qword ptr [rbx + 4*rcx]

48 03 44 8b 18 add rax, qword ptr [rbx + 4*rcx + 0x18]

REX prefix specifying 64-bit registers

Opcode specifying the instruction

ModR/M specifying the operands (including reg vs. mem)

SIB specifying the scale, index register, and base register

Displacement (offset)

Representing Instructions

• MIPS instructions

– Encoded as 32-bit instruction words

– Small number of formats encoding operation code (opcode), register numbers, …

– Regularity!

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type

I-type

J-type

• MIPS fields are given names to make them
easier to refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

MIPS Arithmetic Instructions Format

sub $t0, $s1, $s2

t0 = s1 – s2

0 17 18 8 0 0x22
opcode rs rt rd sa funct

R-format Example

add $t0, $s1, $s2

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Convert this MIPS machine instruction to assembly:

000000 01110 10001 10010 00000 100010

Selection Instruction

A add $s2, $t7, $s4

B add $s1, $t6, $s3

C sub $t6, $s1, $s2

D sub $s2, $t6, $s1

E None of the above

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

MIPS I-format Instructions

• Immediate arithmetic and load/store instructions

– rt: destination or source register number

– Constant: –215 to +215 – 1 (or 0 to 216 – 1 for some instructions)

– offset: offset added to base address in rs

op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

• Load/Store Instruction Format:

 lw $t0, 24($s3)

Machine Language – I Format
op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

Machine Language – I Format
op rs rt constant or offset

6 bits 5 bits 5 bits 16 bits

• Immediate Addition Instruction Format:

 addi $t0, $s3, 26

26

Convert this MIPS assembly instruction to
machine code

sw $t0, 32($s6)

Selection Instruction

A 010101 11011 00100 0000 0000 0010 0000

B 101011 01000 10110 0000 0000 0010 0000

C 101011 10110 01000 0000 0000 0010 0000

D 000000 00010 00000 1010 1110 1100 1000

E None of the above

Sign-extend vs. zero-extend

• The immediate field of an I-format instruction is either sign-
extended or zero-extended

– sign extension: the sign bit (bit 15) is copied into bits 31–16

– zero extension: 0 is placed into bits 31–16

• Opcode determines
which occurs

op rs rt immediate

6 bits 5 bits 5 bits 16 bits

Questions about Machine Instructions?

Reading

• Next lecture: Bitwise Operations

– Section 2.7

• Problem Set 2 due Friday

• Lab 1 due Monday

	Slide 1: CSCI 210: Computer Architecture Lecture 8: Computer Representation of MIPS Instructions
	Slide 2: Announcements
	Slide 3: CS History: ENIAC
	Slide 4: CS History: ENIAC
	Slide 5: How to Speak Computer
	Slide 6: Two Key Principles of Machine Design
	Slide 7: What happens if someone writes new machine code in the memory where your program is stored, overwriting your program?
	Slide 8: Recall: Instruction Set Architecture
	Slide 9: Key ISA decisions
	Slide 10: RISC versus CISC (Historically)
	Slide 11: A = A*B
	Slide 12: Which of these is faster?
	Slide 13: RISC vs CISC
	Slide 14: So . . . Which System “Won”?
	Slide 15: The computer figures out what format an instruction is from
	Slide 16: Instruction Formats What does each bit mean?
	Slide 17: x86-64 example
	Slide 18: Representing Instructions
	Slide 19: MIPS Instruction Fields
	Slide 20: MIPS Arithmetic Instructions Format
	Slide 21: R-format Example
	Slide 22
	Slide 23: MIPS I-format Instructions
	Slide 24: Machine Language – I Format
	Slide 25: Machine Language – I Format
	Slide 26
	Slide 27: Sign-extend vs. zero-extend
	Slide 28: Questions about Machine Instructions?
	Slide 31: Reading

